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Abstract— Electrocardiography (ECG) is the recording of the 

electrical activity of the heart through electrodes. ECG signals are 

crucial in the early diagnosis of numerous cardiac diseases. 

Therefore, it is very important to read and analyze these signals 

using state-of-the-art technologies. The regular wave shapes in 

ECG data are frequently disturbed when certain heart diseases 

occur and these changes in signals help for detecting the disease. 

Signal processing and machine learning-based methods are widely 

used for this purpose. In recent years, deep learning-based 

methods have become widespread, and they offer promising 

results. This study aims to segmentation-based detection of R-peak 

locations in ECG signals. First, the ECG signal is transformed into 

a Continuous Wavelet Transform (CWT) based scalogram image, 

and then U-Net-based deep learning architectures are utilized for 

the segmentation. The comparisons are carried out on MIT-BIH 

Arrhythmia Database (MIT-DB). Whereas all methods provide 

promising results, U-Net 3+ model achieves 0.99 in Precision, 0.98 

in Recall, 0.99 in F1 score, and 0.98 in Accuracy with the lowest 

parameter size. 

Keywords—ECG; Scalogram; Segmentation. 

I.  INTRODUCTION  

Electrocardiography (ECG), which is used in the diagnosis 
of cardiovascular diseases, is the recording of electrical activity 
that occurs during the contraction of the heart using electrodes. 
An electrical activity occurs during the contraction and 
relaxation of the atria and ventricles, also known as the 
heartbeat. Thanks to the measurement of the electrical activity 
created by the heart at each contraction, detailed information is 
obtained about many topics such as heart rhythm, frequency, and 
propagation. The ECG is recorded with electrodes glued on the 
chest, arm, and leg areas. An ECG signal consists of P, Q, R, S, 
and T waves. The graphical values generated by these waves 
provide the physician with information about the patient's heart 
health. 

Cardiovascular diseases are common types of heart disease, 
and they can occur for a variety of reasons. Examples of these 
diseases include arrhythmias, which are caused by problems in 
the electrical conduction system of the heart, cardiomyopathies, 

which are caused by problems related to the functions of the 
heart muscle, congenital heart diseases, coronary artery diseases 
expressing problems in the vessels responsible for feeding the 
heart and oxygen support, and infection in the heart tissue. Since 
cardiovascular diseases are one of the diseases that cause the 
deadliest in the world, early diagnosis is crucial. A disease that 
cannot be detected its early stages, might have disastrous effects. 
On the other hand, accurate diagnosis, along with early 
diagnosis, is crucial and and requires trained specialist. The 
training of specialist is also a time-consuming and expensive 
endeavor. To reduce this cost, state-of-the-art machine learning 
approaches trained with data sets verified by experts can be 
utilized for the diagnosis of diseases. 

Many studies have been conducted in the literature on the 
determination of R-peaks. Vijayarangan et al. obtained an F1 
score of 0.9837 using the INcResU-Net architecture with a 1-
dimensional ECG signal [1]. Zhou et al. obtained 90.61% 
accuracy using 1-dimensional convolutional neural networks 
(CNN) and long-short-term memory (LSTM) [2]. Zahid et al. 
obtained 99.83% F1 score, 99.85% Recall, and 99.82 Precision 
in MIT-DB using 1-dimensional CNN [3]. Merah et al. obtained 
99.84% Sensitivity and 99.88% Predictivity in MIT-DB with a 
Stationary Wavelet Transform (SWT) based study [4].  Qin et 
al. obtained 99.39% sensitivity, 99.49% predictivity, and 
99.89% accuracy in MIT-DB with an adaptive and time-efficient 
R-peak detection algorithm [5].  

This study aims to successfully determine the R-peak 
locations using the input scalogram image obtained by taking 
CWT, and segmentation-based deep learning architectures. 
First, the 1-dimensional signal is downsampled from length 
1440 to length 512. Then the CWT of the signal is computed. 
Then, the 2-D scalogram matrix is obtained by taking the 
magnitude of the complex CWT coefficients. Finally, the 
scalogram image is normalized and applied as input to various 
U-Net-based deep segmentation methods. The detection is 
carried on the segmentation map. MIT-DB is used in the 
experiments. The block diagram of the proposed method is 
shown in Fig. 1. 
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Fig. 1. Block diagram of the proposed method 

II. MATERIALS AND METHODS 

A. MIT-BIH Arrhythmia Database 

The MIT-DB was used as the data set in this study. The MIT-
DB consists of 48 ECGs with a sampling frequency of 360 Hz 
and a duration of approximately 30 minutes each. These 48 
ECGs belong to 47 patients [6]. In this study, 109.494 R-peaks 
from MIT-DB were used. 

B. Data Preprocessing 

In this section, the ECGs contained in the MIT BIH data set 
have been made desirable. First of all, each ECG is taken and 
divided into 4-second windows. each 4-second window 
corresponds to a length of 1440. A total of 21648 windows with 
a length of 1440 were obtained here. Later, these 1440-length 
windows were subsampled to 512 lengths. This subsampling 
was performed by the Fourier Method.  

C. Continuous Wavelet Transform 

CWT is used for the time-frequency analysis of a signal. It 

improves the localization property of the Short-Time Fourier 

Transform (STFT). CWT provides high time resolution and 

low-frequency resolution at high frequencies by adjusting the 

scale and position parameters. At low frequencies, it provides 

low time resolution and high-frequency resolution [7]. The 

CWT formula is given in Eq. 1. 

 

𝑇(𝑎, 𝑏) =  
1

√𝑎
∫ 𝑥(𝑡)𝜓∗

∞

−∞

(𝑡 − 𝑏)

𝑎
𝑑𝑡    (1) 

 Where a is the scale parameter, b is the position of the 
wavelet, ψ is the wavelet function, and x is the signal to be 
transformed. 

In this study, the Morlet wavelets are used. The Morlet 
wavelet is the product of the complex exponential and the 
Gaussian window. This type of wavelet has been preferred 
because it makes R-peaks evident in ECG signals.  As a result 
of CWT, a 2D matrix in the range of 0.68 Hz - 47.13 Hz was 
obtained. Since the R-peak is more prominent here, the range of 
16.66 Hz - 47.13 Hz was chosen. Therefore, a 2D matrix of 
16x512 was obtained. 

D. Wavelet Scalogram 

By taking the CWT of ECG signal using Morlet wavelets, a 

2-D complex matrix is obtained. The 2-D complex matrix is 

converted into decimal numbers by taking the magnitude as 

given in Eq. 2. Finally, a 3-channel pseudo color image is 

obtained by applying Viridis color map.  

 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = |𝑎 + 𝑏𝑖| = √𝑎2 + (𝑏)2  (2) 

E. Labeling 

The positions of the R-peaks are provided with the dataset. 

We created a label image of the same size as the scalogram 

image, which contains columns filled with ones around R-peak 

locations and zeros elsewhere. Column width is set to 10 in the 

experiments. 

F. Normalization 

Values in each input scalogram image are linearly scaled to 

the range of 0 and 1 as given in Eq. 3. 

 
𝑥′ =

𝑥 − min(𝑥)

max(𝑥) − min (𝑥)
 

 (3) 

G. Deep Learning Architectures 

In this study, U-Net and its derivatives R2U-Net, Attention 

U-Net (Att U-Net), U-Net++, and U-Net 3+, which are 

segmentation-based architectures, are used with the proposed 

architecture. 

1) U-Net 

It is a type of enhanced convolutional neural network used 

for image segmentation. It was published in 2015 by 

Ronneberger et al. With the U-Net architecture, it is aimed to 

increase the data by using a limited number of labeled data. U-

Net architecture has a network structure that first narrows and 

then expands [8]. 

 

2) R2U-Net 

R2U-Net architecture is a U-Net architecture based on the 

Recurrent Residual Convolutional Neural Network (RRCNN). 

The residual network uses the U-Net and RCNN infrastructure. 

The residual unit in the R2U-Net architecture helps training 

during the training of the deep network architecture. Recurrent 

residual convolutional layers provide more powerful feature 

extraction for segmentation [9]. 

3) Attention U-Net 

Attention gate is a method used for medical imaging that 

learns to automatically focus on structures of different shapes 

and sizes. Attention gate-trained models thoroughly emphasize 

salient features for a given structure. It also suppresses 

irrelevant regions in the input image. Attention gates improve 

model precision and accuracy. In addition, it can be easily 
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integrated into CNN architectures such as U-Net with minimum 

computational load [10].  

4) U-Net++ 

The U-Net++ architecture is a deeply supervised network in 

which the encoder and decoder sub-networks are connected by 

a series of nested, dense hopping paths. The network paths 

redesigned for this network aim to reduce the semantic gap 

between the feature maps of the sub-networks between encoder 

and decoder. Here, since the features in the decoder and encoder 

networks are semantically similar, the network learns what to 

do more easily [11].  

5) U-Net 3+ 

The U-Net 3+ architecture utilizes full-scale jump links and 

deep inspections. Full-scale jump links combine high- and low-

level details from feature maps at different scales. Deep 

inspections use the full-scale merged feature maps to learn 

hierarchical representations from there [12]. 

III. EXPERIMENTAL RESULTS 

In this study, 48 ECG signals in the MIT-DB were divided 
into 4-sec windows (1440 samples). Each window was then 
downsampled to 512 samples. Then, CWT of the obtained 
signals was taken and 16x512 2D matrices were obtained. A 
scalogram was obtained by taking the amplitude of this 2D 

matrix. The scalogram was normalized with a minimum-
maximum scaler. Finally, segmentation-based models were 
trained with the generated input and labels. All segmentation 
models were trained with the same training set and tested with 
the same test set.  For training, 75% of the data, i.e. #16237 
images were used. For testing, 25% of the data, i.e. #5411 
images, was used. 

The Keras API of the Tensorflow library of the Python 
programming language was used to implement the segmentation 
models. The training of the segmentation models was carried out 
in the Google Colab environment. The tests were performed on 
a computer with Intel Core i7-10510U CPU and 16 GB Ram. 

In the encoder layer of the segmentation models, there are 
convolution blocks with 32-64-128-256-512 filters respectively. 
Adam optimizer is used with 1e-4 learning rate. Dice loss was 
taken as loss function. Trainings were limited to 50 epochs. 
Deep supervision was also used in U-Net++ and U-Net 3++ 
models. 

Accuracy, Precision, Recall, and F1 score metrics are used 
for comparison. Each R-peak occupies 10 pixels width 
rectangular shape in the label image. The overlapping ratio 
between the segmentation map and the label image is used for 
the detection decision. Detection performances for different 
overlapping ratios are evaluated, and metric comparisons of the 
segmentation models are given in Fig. 2. for overlapping ratios 
from 10% to 100%. 

       
                                                                    (a)                                                                          (b) 

       
                                                                    (c)                                                                          (d) 

Fig. 2. Metric - Overlap Ratio graphs (a) Accuracy – Overlap Ratio (b) Precision – Overlap Ratio (c) Recall – Overlap Ratio (d) F1 Score – Overlap Ratio 

When the results of Accuracy, Precision, Recall, and F1 score 
metrics are assessed, the R2U-Net model outperforms other 
models by a margin of 100% to 60% of overlap ratio. In the same 
overlap ratio ranges, The U-Net 3+ model gives the worst metric 
results. The success of the U-Net model is comparable to the U-
Net 3+ in the same overlap range. The success of Att U-Net and 
U-Net++ models’ performance is comparable to the U-Net 3+ 
and U-Net models at 100% overlap ratio and higher at a 90% 
overlap ratio. All models are approximately equally well, 
regardless of the overlap ratio, which ranges from 60% to 10%. 

The reason why the R2U-Net model has the highest performance 
at high overlap ratios may be due to the higher number of 
parameters compared to the other models. However, this is a 
drawback for the R2U-Net model in terms of prediction time. 
Since the best performances are obtained at 10% overlap ratio, 
the performance values for this ratio are only given in detail in 
Table 1. In Table 1, the U-Net 3+ model gives the best 
performance. Despite the Att U-Net model having the lowest 
prediction time is Att U-Net, the model with the highest 
prediction time is R2U-Net.  
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TABLE I.  10 % OVERLAP RATE METRIC RESULTS 

Model Accuracy Precision Recall F1 Predict Time #Params 

U-Net 0.97 0.99 0.98 0.99 195 s 9.4 M 

R2U-Net 0.97 0.99 0.98 0.98 526 s 26.3 M 

Att U-Net 0.97 0.99 0.98 0.99 178 s 8.7 M 

U-Net++ 0.97 0.99 0.98 0.99 341 s 9.8 M 

U-Net 3+ 0.98 0.99 0.98 0.99 357 s 6.6 M 

Fig 3. shows the input signal and outputs at different stages of 
the proposed method and the label image. Here (a) is an ECG 
signal of length 512. , (b) is the scalogram, (c) is the label image, 
and (d) is the segmentation result of the U-Net model.  

 

                        (a)                                          (b)                                          (c)    (d) 

Fig. 3. Outputs of the proposed method (a)  original signal, (b) scalogram, (c) label, (d) model output(prediction)

 

 

Fig. 4. R-peak detection output of the proposed architecture for the U-Net 

model (red line=ground truth, green dotted line = detected) 

IV. CONCLUSIONS 

This study aims to develop a segmentation-based method for 
the detection of R-peaks in ECG signals. For this purpose, the 1-
dimensional signal was transformed into a 2-dimensional CWT 
matrix to extract the time and frequency characteristics of the R-
peaks. For detection purpose, deep segmentation models were 
used. While all methods gave promising results in the tests, the 
most successful model was the U-Net 3+. It achieved 0.98 in 
Accuracy, 0.99 in Precision, 0.98 in Recall and 0.99 in F1 scores. 
Moreover, it has the least number of parameters with 6.6 M 
parameters. The Att U-Net model has the best prediction time 
with 178 s. This work can be easily integrated into other 
segmentation models in the future. And more successful models 
can be obtained. Additionally, higher performance scores can be 
achieved by increasing the amount of training data.  This study 
can be used in hospitals in the future and can facilitate ECG 
analysis for those working in this field.  
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